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ABSTRACT
 Animal models are crucial for neurological research as they allow 

researchers to elucidate complex neurological processes and develop treat-
ments through controlled experimental trials. Most neurological disorders 
research using animal models involves two critical steps: evaluation of be-
havioral symptoms of the animal models and histological validation of pa-
thologies. These two steps both require multiple human judges’ exquisite 
expertise in neurological diseases, for instance, behavioral shifts and cel-
lular changes in anatomical structure. Such human-dependent methodol-
ogies are time-consuming, labor-intensive, and susceptible to human bias, 
undermining the robustness and reproducibility of animal research. In this 
project, I aimed to improve the efficiency, objectivity, and accuracy of ani-
mal model research by applying emerging artificial intelligence (AI) tech-
nologies to the analysis of behavioral and pathological data, focusing on the 
mouse models of Parkinson’s disease (PD). Using an AI tool DeepLabCut, 
I implemented an automatic body-pose extraction pipeline for the analysis 
of free-roaming behavior of PD mice. I also established a semi-automatic 
analysis pipeline for quantifying the dopaminergic neuron degeneration in 
the brain tissues of PD mice, using a machine-learning workflow QUINT. 
These AI-based pipelines significantly reduced human intervention in 
data analyses. Furthermore, using this semi-automatic analysis pipeline, I 
found a significant correlation between the extent of dopaminergic neuro-
nal degeneration, a prime pathological feature in PD mice, and the severity 
of motor dysfunction computed from their behavioral data. The finding 
suggests that the progression of pathological processes may be reliably 
inferred from behavioral data.  These results set a strong foundation for 
future endeavors to develop AI-based algorithms that are capable of com-
puting behavioral symptoms and pathology scores directly from video 
recordings and brain images, a powerful tool for animal model research.
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INTRODUTION

According to the 2024 World Health Organization report, one in 
three people will be affected by a neurological disorder at some point in 
their lifetime (WHO Media Team, 2024). This stark statistic highlights 
the pressing need to deepen our understanding of neurological disorders 
in order to improve disease prevention, treatment, and rehabilitation. 
Animal models have played pivotal roles in this endeavor as they allow 
in-depth investigation of brain pathogenesis associated with neurological 
disorders at multiple stages of disease progression, as well as underlying 
mechanisms at molecular and cellular levels. For example, MPTP-in-
duced parkinsonian primate models have provided valuable insights into 
disease progression including the formation of Lewy bodies in dopami-
nergic (DA) neurons, synaptic alterations, mitochondrial dysfunction, 
and neuroinflammation/immune responses (Mat Taib & Mustapha, 
2020). Animal models are also critical in diagnostic biomarkers develop-
ment, therapeutic targets identification, and novel treatment testing. For 
instance, common PD treatment L-DOPA and recently developed deep 
brain stimulation were both developed and verified on primate models 
before clinical trials (Pereira & Aziz, 2006).

Most neurological disorders lack known biomarkers (e.g., antigens 
in blood) that readily and reliably provide information about the patho-
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genic processes or response to treatments. As a consequence, such infor-
mation is mainly inferred from clinical behavior observations, a practice 
that prompts human judge bias and error. PD symptoms in animal 
models are scored based on observable symptoms like movement pat-
terns and body postures. For example, open-field tests are used to assess 
general motor activities, based on simple features such as travel distance, 
and movement speed. The pole test is used to assess bradykinesia, and 
the cylinder test is used to measure sensory-motor coordination (Glajch 
et al., 2012). A reliable assessment requires a combination of tests, as well 
as a group of human judges with expertise who can interpret behavioral 
nuances, which requires both time and money (Asakawa et al., 2016). Be-
sides, although human eyes can capture behavioral deviation, our visual 
sensitivity is limited. This limitation makes it difficult to study the early 
stages of diseases, a time usually associated with subtle symptoms, but 
the time to expect the highest intervention efficiency (Gaenslen & Berg, 
2010). Furthermore, a prolonged duration of assessments could lead to 
fatigue in human judges and cause observer bias and low reproducibility.

These limitations also apply to the validation of disease models or 
treatment efficacy, which relies on behavioral assays and post-mortem 
brain histology. Such histological assessment of pathogenesis relies on 
human judges’ expert knowledge for differentiating anatomical struc-
tures and identifying disease-indicating features from brain tissue sec-
tions. For example, DA neuron quantification in assessing neurodegener-
ations in PD has been done manually under microscopes (Wakamatsu et 
al., 2008). Thus, the histological assay also suffers from the same issues as 
behavior assessment, posing general challenges in achieving the desirable 
level of efficiency and objectivity in animal model research.

To increase the sensitivity, effectiveness, and reproducibility of 
neurological disease research using animal models, we propose to use 
artificial intelligence (AI) technologies to outperform human judges in 
behavioral and histological analyses. In particular, we aim to apply AI 
algorithms to PD research using mice the dominant animal model used in 
the field.

1. Dopamine Neuron and Parkinson’s Disease

DA neurons are typically medium-sized neurons with elongated 
axons located in the ventral tegmental area (VTA) and substantia nigra 
pars compacta (SNpc) of the midbrain (Dugan et al., 2011). These neurons 
synthesize DA, a monoamine neuromodulator that is involved in many 
brain functions. Although DA neurons only account for less than 1% of 
total neuron populations in animals (Chinta & Andersen, 2005), they play 
crucial roles in the reward system, motor function, working memory, 
motivation (Wise, 2004), emotion, learning (Redgrave & Gurney, 2006), 
and so on. They are also implicated in a diverse range of neurological and 
psychiatric disorders including PD, addiction, obsessive-compulsive dis-
order, and schizophrenia (Girault & Greengard, 2004). Beyond the central 
nervous system, DA receptors are also present in the kidneys, lungs, and 
blood vessels, contributing to pancreatic endocrine and insulin regulation 
(Volkow et al., 2008). These multifaceted involvements of DA highlight 
their significance in maintaining animal health.

The progressive loss of nigrostriatal innervation – DA neurons 
projecting their axons from the SNpc to the striatum - causes PD (Dick-
son, 2012). The majority of the existing research reports that the first PD 
motor symptom occurs only after ~50% of the DA neurons are lost, while 
higher thresholds have been also reported. Because DA neurons distinc-
tively carry pigments called neuromelanin, which only forms when free 
DAs are present in the cytosol (Fedorow et al., 2005), DA-depleted brain 
display a loss of pigments in the SNpc and VTA region (Figure 1).

DA neurons are divided into three categories based on their 
anatomical locations: VTA - A10, SNpc - A9, and retrorubral field - A8 
(German & Manaye, 1993). These anatomical divisions of neurons are also 
related to their projection targets and functional specificities, distinguish-
ing DA neurons from other monoaminergic projections such as norepi-
nephrine and serotonin (Avery & Krichmar, 2017). A9 DA neurons in the 

SNpc project to the dorsal striatum through the nigrostriatal pathway, 
which releases DA that modulates D1 and D2 receptors, each selectively 
expressed in striatal neurons in the “go” and “no-go” pathway, respec-
tively (McGregor & Nelson, 2019). So A9 neurons are especially import-
ant for regulating voluntary motor control (Aubert et al., 1997) (Figure 
2). In contrast, DA released from VTA and the retrorubral field play roles 
in regulating emotion, reward, addiction, and other cognitive functions. 
Besides anatomical structures, a better understanding of DA neurons’ 
genetic profiles can more comprehensively elucidate DA neurons’ diverse 
functionality. A recent study identified three subtypes of DA neurons 
based on their genetic profiles and their distinctive functional roles: 
Aldh1a1+, Calb1+, and Vglul+. A subset of the Aldh1a1+ subtype (Anxa1+) 
that projects to the dorsal striatum displays increased activity patterns 
that are temporally locked to the movement acceleration phase. The other 
subtypes projecting to the ventral striatum display deceleration-locked 
activity patterns in addition to reward responses. Therefore, diverse 
subtypes of DA neurons,  each with a distinct molecular profile, show dif-
ferent anatomical projection targets, and functional roles (Azcorra et al., 
2022). In particular, a loss of Anxa1+ neurons might account for significant 
motor deficits in PD.

Figure 1: Substantia nigra pigment comparison between a PD patient and 
a healthy individual (Neveen A, 2019).

Figure 2: A8, A9, and A10 DA neuron clusters and their projections to 
caudate putamen (i.e., striatum), nucleus accumbens, olfactory tubercle, 
and prefrontal cortex (Luo & Huang, 2016)

2. Rodent Models of Parkinson’s Disease

2.1 Genetic PD model

Normal aggregation of alpha-synuclein is beneficial and essential 
for an organism, but excessive alpha-synuclein aggregation will lead to 
PD (Fields et al., 2019). Alpha-synuclein’s function is not clearly identified 
yet, but existing research suggests its role in maintaining the supply of 
synaptic vesicles in the presynaptic terminals and regulating the release 
of DA. Thus, the misfolding of alpha-synuclein will cause abnormal 
activities in these regards (Fields et al., 2019). There are multiple genetic 
mouse models that show alpha-synuclein aggregation. These models play 
a critical role in understanding the molecular processes underlying the 
aggregation of alpha-synuclein and their effects on behavioral functions.
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The first gene discovered to underlie PD was the SNCA gene 
that encode alpha-synuclein protein, which is linked to familial PD 
(Polymeropoulos et al., 1997). SNCA is associated with an early-onset of 
PD. Mutations such as duplication, triplication, and point mutation of 
SNCA lead to the synthesis and misfolding of alpha-synuclein (Srini-
vasan et al., 2021). SNCA-mutated PD mice have provided evidence in 
understanding the altered DA release and uptake (Villar‐Piqué et al., 
2015), olfactory dysfunction (Uemura et al., 2021), and rapid eye move-
ment sleep disorders (Zhao et al., 2020) in PD. Besides SNCA mutation, 
alkaline phosphatase-related gene mutations, and ubiquitin-proteasome 
system-related gene mutations are also used in PD research (Pan et al., 
2008). These genetic PD models have made significant contributions to 
the understanding of pathogenesis in PD (Siddiqui et al., 2016).

2.2 Neurotoxin PD Model 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hy-
droxydopamine (6-OHDA) are commonly used chemical neurotoxins for 
inducing DA depletion and parkinsonian symptoms in animal models.

MPTP is a specific and reproducible neurotoxin that damages 
the nigrostriatal system. Its effectiveness has been shown in monkeys, 
mice, and rats (Tieu, 2011). MPTP can easily cross the blood-brain barrier 
and accumulate in DA neurons through DA transporters, so it can be 
injected subcutaneously in rodents. The accumulation of MPTP leads to 
ATP reduction and oxidative stress increment in neurons, thus causing 
cell death and neuroinflammation (Jackson-Lewis & Przedborski, 2007). 
While the MPTP method is robust and easy, the amount of MPTP admin-
istered needs to be delicately controlled because rodents are resistant to 
lower doses, but are susceptible to death with higher doses. Additionally, 
studies suggest that certain mouse strains can show recovery from acute 
motor deficits after MPTP injection within a few days (Sedelis et al., 2001). 
Therefore, MPTP is less ideal to use in long-term characterizations of the 
disease.

In contrast, 6-hydroxydopamine (6-OHDA) is an analog to DA and 
norepinephrine that depletes DA neurons by producing oxidative stress 
and reactive oxygen species within DA neurons (Tieu, 2011). It does not 
cross the brain-blood barrier, so it must be injected intracranially to affect 
neurons. Although the administration of 6-OHDA is more complicated, 
it allows specific targeting of DA depletion in the brain. For instance, 
small brain regions like the medial forebrain bundle can be targeted with 
6-OHDA and leads to robust PD induction in mice. This cannot be done 
with genetic PD mice model or MPTP mice model. Additionally, injecting 
6-OHDA into only one hemisphere of the brain allows animal models to 
mimic the asymmetrical nature of nigrostriatal dopaminergic innervation 
of PD progression in humans (Bové & Perier, 2012).

In the current study, we use 6-OHDA to induce DA neuronal 
degeneration and PD symptoms in mice. 6-OHDA enables us to target 
axons in the striatum that are projected from SNpc in only one hemi-
sphere, so our mice model can emulate the asymmetric pathogenesis of 
human PD.

2.3 Behavior Analysis in PD Mice

Studying PD phenotypes in mice requires a combination of be-
havior observations and histological assessment. It is important to obtain 
valid animal behavior data because histological assessment can only be 
done after mice are sacrificed. I will discuss a few behavioral assays that 
are commonly used to assess the degree of motor deficits in PD mice 
compared to normal control mice below.

Open-field Test

The open-field test is the most widely used assay that examines the 
animal’s free locomotive activity. Across the literature and various mouse 
models,PD mice exhibit a decrease in locomotor activities in open-field 
tests (Taylor et al., 2010), except for A53T Synuclein Transgenics mice 
(Unger et al., 2006). During open-field tests, animals are placed in an 
open-field arena, where they freely roam for typically 10 minutes while 
being video recorded with an overhead camera. Human judges can ana-

lyze the animals’ general motor features such as total travel distance, av-
erage movement speed, and freezing behaviors from the recorded videos. 
Simple measures like the time the animal spends around the edge of the 
box can also be used to measure the level of anxiety associated with PD 
(Seibenhener & Wooten, 2015). Besides using video recording, infrared 
beam arrays are another way to track the animal’s locomotion. This meth-
od requires outfitting the open-field chamber with infrared beam sensors. 
As the animal moves and interrupts the photobeam, the infrared beam 
system can estimate the animal’s location and movement pattern (Klein 
et al., 2022). Photo-beam open-field recording requires less computation 
and less storage space with a more automated measurement of basic 
locomotor activities, but it does not allow the tracking of multiple animals 
if one intents to study animal interactions. While both methods can serve 
the same movement-tracking purpose, the video-recorded open-field test 
is more advantageous in providing comprehensive and detailed data for 
more complex body postures and movement patterns. Video-recorded 
open-field tests are also more suitable for recording multiple animals 
when assessing social interactions. 

Grip Strength Test

The grip strength test is typically used to diagnose central nervous 
system disorder, It assesses the animal’s neuromuscular functions. PD 
mice tend to show a decrease in grip strength (Tillerson et al., 2002). In 
the test, the animal’s paws are placed on a wire grip, which they naturally 
hold on to. The human observers gently pull the rodent’s tail backwards 
and observe the gripping strength through the dynamometer connected 
with the wire grip. The maximal gripping strength before the rodent re-
leases its paw from the grid will be recorded and used for neuromuscular 
function assessment.

Pole Test

The pole test is widely used for assessing bradykinesia (slowness 
of the movement) and unilateral brain lesions in PD mice. During the test, 
mice will be placed facing upward on a pole. The time that mice spent 
descending from the pole, and the number of rotations during descend-
ing motion are recorded. PD mice are shown to take longer to descend, 
exhibiting bradykinesia (Mitsumoto et al., 1998). Unilateral brain-lesioned 
mice additionally exhibit ipsilateral – the same direction as the lesioned 
brain hemisphere- turning when descending.

Drug-Induced Ipsilateral Rotation

Amphetamine is a stimulant drug that increases DA release. In hu-
mans, it is used to treat ADHD (Heal et al., 2013). In unilaterally lesioned 
PD mice (i.e., DA degeneration manifests in only one hemisphere), their 
body movements on the contralateral side of the lesioned hemisphere 
are impaired. The administration of amphetamine induces an excessive 
release of DA and leads to hyperactivity of the non-lesion sides of the 
brain. This hyperactivity of the non-lesion side of the brain will induce a 
dramatic ipsilateral turning behavior (Iancu et al., 2005). Conventional-
ly, turning behaviors are counted by human judges’ visual inspections, 
posing a risk of subjective biases and errors. 

Human judges play essential roles in PD diagnosis. Trained judges 
can use their expert knowledge to make valuable judgments about animal 
behavior patterns, thus detecting behavior changes and altering disease 
symptoms. However, even expert judges have limited visual sensitivity 
to subtle changes. Besides, manual measurements are also prone to biases 
and errors. To improve the efficacy of animal behavior analysis, scien-
tists have developed artificial intelligence technology tools to detect and 
analyze animal behavior with higher sensitivity and objectivity, ideally 
to reduce the number of behavior assays and time spent for a single diag-
nosis. For instance, DeepLabCut is an automated video-tracking tool that 
comprehensively tracks animals’ body parts thus allowing researchers to 
analyze animal behavior patterns in depth.

3. Artificial Intelligence

3.1 Introduction of Artificial Intelligence

Artificial Intelligence (AI) has grown dramatically in the past 
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twenty years and has transformed the way we live. The goal of AI is to 
simulate human intelligence to solve real-life problems. This rapid devel-
opment portrays the current technological advancements and humanity’s 
growing desire to develop automated assistants that make life easier. 
According to John McCarthy, the development of an AI system can be 
either software, hardware, or both. AI’s key application elements are 
natural language processing, expert systems, robotics, intelligent agents, 
and computational intelligence (Collins et al., 2021) (Figure 3).

Figure 3: Key elements of the AI family tree. Source: Saudi Aramco

Natural language processing (NLP) is a machine-learning technol-
ogy that enables computers to interpret, process, and comprehend human 
languages. Natural language processing (Nadkarni et al., 2011) has been 
used to develop chatbots like virtual nursing assistants. This technology 
takes tedious tasks off nurse’s shoulders so they can spend time in patient 
care. Nurses still interact with online clients but only clients request to 
speak with a real nurse. An expert system is a computer program that 
is refined and sufficient to provide diagnosis or treatment insights for 
disease. DXplain developed by Massachusetts General Hospital/Harvard 
Medical School Laboratory of Computer Science is based on over 2600 
diseases and 5700 clinical findings. It has become a staple use in hospi-
tals and medical schools for clinical education (Barnett, 1987). However, 
despite AI’s rapid development, human clinical AI technology is not yet 
independent, as it must be used in combination with human doctors. In 
contrast, robotic-assisted stereotaxic surgery has been used for microin-
jection and even craniotomy in animal research (Ball et al., 2021). This 
robotics substantially automates the surgery process compared to the 
traditional manual approach. Yet, human supervision is still required 
and necessary. Lastly, an intelligent agent is a program that can make 
decisions based on the environment, user input, and experience (Engel-
brecht, 2023). IBM for Oncology has been used in real life. This program 
can combine a patient’s file, clinical expertise, external research, and data 
to identify and rank the treatment plans and options.

Various AI elements have become tools in healthcare. From back-
stage paperwork to face-to-face patient care, the collaboration between AI 
and human efforts improves the efficiency of different processes. Most AI 
applications are built on large datasets, thus requiring excellent efficient 
data processing and analyzing techniques, like machine learning.

3.2 Machine Learning Techniques 

Machine learning (ML) is the most popular technique in AI, where 
statistical models make inferences based on datasets going so far as to 
mimic human decision-making in very specific instances. The goal of 
machine learning is to interpret and learn from data. Without explicit 
coding, ML will play the knowledge-discovery and data-mining role to 
derive values from data. ML can automatically improve itself over time 
with more training and data (Nasteski, 2017). With the rising demands 
for data processing, machine learning has been applied widely in our dai-
ly lives, such as image recognition and speech recognition from personal-
ized recommendations on platforms such as Google, Spotify, and Netflix.  

3.2.1 Supervised Machine Learning

Supervised ML learns patterns from data based on input-output 
pairs. “Supervised” is derived from the fact that output for training data 
is given. To train a supervised ML algorithm, input data are split into 
training and testing datasets. The training dataset will include labels that 
indicate classifications, such as male vs. female, big vs. small, or 1 vs. 0. 
This labeled dataset is used to train the algorithms. The algorithm will 
pick up data pattern differences relative to their labeling. After sufficient 
training and evaluation, the algorithm is used to predict the test dataset. 
Adjustments might be made if prediction performance is not ideal (Figure 
4) (Nasteski, 2017).

Figure 4: Supervised Learning Workflow. Source: https://pub.
aimind.so/supervised-machine-learning-algorithms-and-techniques-ex-
plained-in-depth-2a904fe77ee3

3.2.2 Supervised Machine Learning: Linear Regression

Ordinary least squares regression (OLS) is the simplest regression 
method. Its goal is to capture the best-fit linear relationship (coefficients 
and intercept) between dependent and independent variables. The linear 
model calculates the coefficients (a, b, c, d…) of each independent variable 
(x1, x2, x3, x4…). The weighted function (f(x) = ax1 + bx2 + cx3 + dx4…) 
represents the optimal linear relationship. To evaluate its performance, 
the sum of squared error is used. The difference between the predicted 
data point and the actual data point is known as the residual or error. 
Taking the sum of the squared residual/error of different weighted 
functions select the best linear unbiased estimator (BLUE) of a linear 
relationship. Because OLS regression relies on minimizing the residual 
sum of squares, the performance of these models are typically evaluated by 
the mean squared error – an equivalent matric. The lower the mean squared 
error, the better the regression model (Figure 5). Even though the vast 
majority of relationships in the natural world are far more complex than 
linear relationships, nonlinear relationships have linear components. 
Because ordinary least squares regression has an optimal, closed-form 
solution, it provides better guarantees than any other ML model of dis-
covering a linear component (Hastie et al., 2017).  

Figure 5: Linear Regression and its residual error. Source: https://
rpubs.com/cuborican/regression
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3.2.3 Supervised Machine Learning: Feedforward Neural Network

A feedforward neural network is a more complicated form of su-
pervised machine learning. It is used when many independent variables 
are used to predict dependent variables. Different from linear regression, 
a neural network is used for nonlinear relationship prediction. In the 
brain, each neuron has its role in information processing, and they prop-
agate signals back and forth. In a neural network, we articulate neurons 
of individual roles. The leftmost layer is the input layer that takes input 
features, and its size is typically the size of input data. After this layer, the 
hidden layer(s) will transform the input layer’s data using the weights of 
the hidden layer’s neurons Often, the more complicated a dataset is, the 
more hidden layers and neurons it will require. This computation propa-
gates till data passes from the input layer to the last hidden layer, where 
a non-linear activation function will map current data into a known 
range, so the output layer can receive the information and transform it 
into output values. With competitive training, the weights of each hidden 
layer’s neuron can be tuned to obtain a “better” model (Figure 6) (Hastie 
et al., 2017).

Figure 6: Neural Network Model Architecture. Source: https://www.
v7labs.com/blog/neural-network-architectures-guide

Continuous training of neural networks has the potential to recog-
nize and model complex relationships from the dataset. However, neural 
networks are highly prone to overfitting, thus it requires a large data set, 
if not thousands, or even millions of data points to minimize the risk of 
overfitting. Besides, there are some other disadvantages when applying 
supervised neural networks: 1) neural networks take time and money, 
computing power, and the tuning of the algorithm; 2) neural networks’ 
algorithms are mysterious, it is yet to know the mechanism of neural 
network’s decision-making process. Although neural networks might 
show incredible results, their unknown nature should be taken cautiously 
especially if it is used in real life.

4. Artificial Intelligence in Biomedical Research
4.1 AI Application in Human PD Diagnosis
Recent research has leveraged machine learning (ML) techniques 

to detect PD symptoms in human individuals, aiming to enable earlier 
diagnosis and monitoring of disease progression. These ML algorithms 
have demonstrated promising results in analyzing various motor PD 
symptoms for diagnosis, particularly using data from wearable sensors 
that capture relevant movement patterns from different body parts. 
Keijsers et al. used six triaxial accelerometers ( devices that provide 
simultaneous acceleration measurements in three orthogonal directions) 
that can be attached to different human PD patients’ body parts to collect 
their motor movement data (both upper arms, both upper legs, the wrist 
of the most affected body side, and the trunk) in a simulated house for 
3 hours while PD patients conducting daily activities. With the compre-

hensive data collected from each sensor, Keijsers et al. characterized the 
mean segment velocity, mean segment velocity when moving, percentage 
of moving, and the percentage of dominant frequency per body part. 
They developed a neural network with two hidden layers, inputting all 
body parts’ characterized data. As a result, this neural network achieved 
a 97% of sensitivity and specificity in distinguishing the on and off state 
of the disease (Keijsers et al., 2006). This study reveals how integrated 
analysis of motor movement patterns can facilitate the detection of PD 
with the help of ML. Interestingly, another group of researchers investi-
gated whether using less wearable devices to characterize one specific PD 
symptom can be used in PD detection. Hssayeni et al. estimated tremors 
using two sensor trackers (one on the wrist and one on the ankle) and 
correlated it with PD diagnosis under a more natural environment. Data 
was collected when participants conducted daily activities like walking, 
chopping vegetables, and getting groceries. By using a deep learning 
model, they showed the highest up-to-date correlation between PD diag-
nosis and tremor (Hssayeni et al., 2019). These studies show the potential 
of ML in improving the efficiency and sensitivity in diagnosing PD based 
on the patient’s motor behavior.

Building upon these findings, Aich et al. (2020) developed a 
method for identifying PD patients without wearable sensors. They 
applied 3D motion capture techniques to analyze the gait of participants 
without wearing any sensors. The 3D motion analysis system can capture 
participants’ motor activities based on participants’ video recordings in 
the natural environment. After obtaining data using 3D motion analysis, 
Aich et al. (2020) applied feature selection techniques to determine what 
motor features are significantly related to the disease and developed a 
ML classification algorithm based on these identified motor features. 
Their model was able to achieve an accuracy of over 98.56% in identifying 
PD patients (Aich et al., 2020). This study demonstrates the potential of 
ML in automating PD diagnosis through non-invasive techniques in the 
natural environment.

4.2 AI Application in Animal Research

4.2.1 Behavioral Data Analysis: DeepLabCut 

AI technologies have been introduced and actively utilized in ani-
mal research. For instance, DeepLabCut (DLC) is an open-source software 
package used for tracking animal body parts and estimating poses with-
out markers using deep learning. This program utilizes a combination of 
feature detectors (ResNets, readout layers, MobileNetV2s, etc) to obtain a 
state-of-the-art algorithm performing pose estimation (Nath et al., 2019) 
at an inexpensive cost. DLC processes video data from camera recording 
and performs body parts labeling and tracking based on a small set of 
user input. As a result, it exports files with x and y coordinates for each 
body part and timestamps. DLC can be applied to a wide range of organ-
isms. DLC was used in Hayakawa et al’s research in studying crickets’ 
circadian rhythms. DLC successfully recognized and labeled crickets’ six 
body parts with high confidence during daily activities, thus providing 
evidence showing crickets’ diurnal rhythms (Hayakawa et al, 2024). 
Studying animal behaviors in the wild can interrupt animal’s natural be-
havior and cause danger to the researcher. DLC can help with this issue. 
Wiltshire et al utilized DLC to label chimpanzees and bonobos’ free-liv-
ing behaviors, offering valuable kinematic data in studying wild primates 
(Wiltshire et al., 2023). DLC utilizes an elegant graphic user interface 
(GUI) that is easy to use, all the training can be done by mouse-clicking, 
and no coding knowledge is required to use DLC (Figure 7).
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Figure 7: DeepLabCut

4.2.2 Histology Data Analysis: QUINT

 Besides behavioral observation, the analysis of the animal 
brain tissue is also an important component in neurological disease 
research because they can provide critical pathological evidence of the 
disease. The common approach to studying the pathological processes of 
neurodegenerative disorders is to visualize specific molecule aggregates 
or loss by applying immunohistochemistry or other staining techniques 
on sectioned brain slices. The processed brain tissues are observed under 
a microscope to detect molecular/structural changes. Such brain tissue 
analyses involve two essential tasks: 1) anatomical identification of differ-
ent structures and 2) protein/target molecule quantification. These two 
steps rely on domain-expert decisions and a large amount of manual op-
eration, which makes the task difficult and time-consuming. Addressing 
these challenges in histology, a recently developed QUINT workflow pro-
vides semi-automatic feature quantification and analysis tools. Its efficacy 
has been demonstrated in many research. For instance, QUINT quantified 
the co-labeling SNCA and alpha-synuclein and revealed the revealed 
alpha-synuclein’s accumulation specificity in selected neuron types. 
QUINT is also capable of labeling multiple targets of interest (Geertsma et 
al., 2024). In Gurdon et al.’s research on Alzheimer’s disease, QUINT was 
used to label different neurons, microglial, reactive astrocytes, all nuclei, 
and beta-amyloid 1-42 pathology. These targets of interest are quantified 
in Alzheimer’s disease mouse models, revealing that the variation of age 
at onset and symptoms are related to cell compositions (Gurdon et al. 
2023). QUINT workflow is a powerful tool with high efficiency in tissue 
registering and quantifying the pathogenic features in animal research.

Figure 8: QUINT workflow

GOAL
I aim to build an AI-based analysis pipeline that semi-automati-

cally processes behavior and histology data from PD mouse models, to 
improve efficiency, objectivity, and precision in the research of neurologi-
cal disorders using animal model.

SPECIFIC AIMS

1) Establish a surgical protocol to generate PD mice.

2) Develop an automatic pipeline to analyze PD mouse movement 

data using DLC.

3) Establish an immunohistochemistry (IHC) protocol for histo-
logical assay of PD pathology.

4) Develop a semi-automatic pipeline to analyze IHC data using 
QUINT.

5) Develop an ML algorithm to diagnose PD from movement 
data.

Chapter 1: PD Mice Generation and Behavior Data Collection
Methods

Animals

Both male (N = 16) and female (N = 5) C57/B16J WT mice (13 – 55 
weeks old at the time of the experiment) were used. Mice were kept on 
a 12 h light/dark cycle with food and water available ad libitum. All 
procedures were approved by the Rosalind Franklin University Institu-
tional Animal Care and Use Committee (IACUC) and followed the NIH 
guidelines.

Open-Field Test

We used an open-field test to collect the free-roaming behavior 
data to examine the movement patterns of PD mice compared to control 
mice. A mouse was placed in the center of a box (50 cm * 40 cm * 33cm) 
and was allowed to freely roam for 10 minutes. An overhead camera (AV 
Alvium 1800 U-291c, Allied Vision) records the mouse in the open-field 
arena. The video is recorded at 60 frames per second and was saved in an 
mp4 format for subsequent analysis. After the test, the mouse was placed 
back in their home cage.

Behavioral Data Collection Timeline

The open-field test was conducted five times for each mouse: Day 
-3 (3 days before the surgery day), Day -2, Day 7, Day 14, and Day 21. 
Day -3 was used to help the mouse to acclimate to the open-field envi-
ronment. Day -2 was to collect control data. Day 7, Day 14, and Day 21 
data were to track the progression of the disease following a PD-inducing 
surgery. The five test sessions were referred to as acclimation, control, 
pd1, pd2, and pd3, respectively (Figure 9).

Figure 9: Kinematic Data Collection Timeline\

Surgery 

On the surgery day, mice were injected with the assigned 
substances: 6-OHDA or saline vehicle. Before injecting 6-OHDA, mice 
received premedication made of desipramine and pargyline 15 minutes 
before the surgery started. Desipramine is a 5HT/norepinephrine (NE) 
uptake inhibitor, so it protects 5HT and NE neurons and thus increases 
6-OHDA’s selectivity DA neurons. Pargyline is a monoamine oxidase 
inhibitor, thus it increases the sensitivity of DA neurons’ axon terminals 
to 6-OHDA and increases their vulnerability (Thiele et al., 2012). Detailed 
recipes and surgery procedures can be found below. After surgery, mice 
went through a 7-day post-operative recovery period with water and 
food ad libitum. 6-OHDA-injected mice were also supplied with diet gel 
to prevent dehydration and malnutrition.
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Drug Preparation

-   Premedication

Desipramine HCI was administered at 25 mg/kg and pargyline 
at 5 mg/kg. Both desipramine and pargyline were dissolved in normal 
saline at a concentration of 2.5 mg/ml and 5 mg/ml, respectively. There-
fore, both drugs were administered at 10 ml/kg. 10 ml of premedication 
was made each time and was stored in a -80 Celsius-degree refrigerator 
until use. The amount needed is calculated as below:

Desipramine correction factor = molecular weight of desipramine HCI/ 
molecular weight of desipramine

Desipramine HCl needed = Desired concentration * desired volume * 
correction factor

2.5 mg/ml * 10.0 ml * (302.84/266.38) = 28.43 mg

 

Pargyline correction factor = molecular weight of pargyline HCI/ molecu-
lar weight of pargyline 

pargyline needed = Desired concentration * desired volume * correction 
facto

0.5 mg/ml * 10.0 ml * (195.69/159.23) = 6.15 mg 

         28.45 mg of desipramine.HCI and 6.15 mg of par-
gyline.HCl was mixed with 8 ml of sterile normal saline (0.9%) in a 10 ml 
glass beaker. The mixture was vortexed and heated at 45 degrees Celsius 
till everything was dissolved. Then, drops of 1M NaOH were added till 
the pH became 7.4. Finally, sterile saline (0.9%) was added to the mixture 
to make it 10 ml in total. The solution was aliquoted, labeled, and stored 
in the -80 Celsius degree freezer until use.

-   Vehicle (0.9% saline and 0.02% ascorbic acid mixture)

0.2 g of ascorbic acid was mixed with 1L of sterile saline (0.9%), 
and stored in the

-80 Celsius degree freezer until use.

-   6-OHDA

6-OHDA.HBr is light-sensitive and heat-sensitive. It has an ex-
piration duration of 6 hours. Thus, 6-OHDA.HBr should be made fresh 
before the surgery and put on ice at all times. If the 6-OHDA solution 
turns brown during the 6-hour interval, it is an indication of oxidation. If 
it happens, a new batch of 6-OHDA should be made. The formulation for 
making 6-OHDA is below:

6-OHDA correction factor = molecular weight of 6-OHDA.HBr/ molecu-
lar weight of 6-OHDA

6-OHDA. HBr needed = Desired concentration * desired volume * cor-
rection factor15.0 mg/ml * 0.5 ml * (250.09/170.19) = 11.03mg

33.7 mg/ml * 0.5 ml * (250.09/170.19) = 24.76 mg

         The desired amount of 6-OHDA was quickly mixed 
with 0.5ml of the aforementioned vehicle solution in a light-blocking 
tube. After vortexing, the solution was kept on ice immediately. The time 
was recorded to use the solution within 6 hours.

Surgery Procedure 

1) 15 minutes after premedication administration, place the 
mouse in the anesthesia-induction chamber and anesthetize it with 2% 
isoflurane vaporized in 100% oxygen. The lack of toe reflex is an indicator 
of sufficient anesthesia. Take the mouse out of the induction chamber, 
and place it on the warm surgery plate. Make sure mouse’s airway is 
sealed with the isoflurane nose mask.

2) Check the mouse’s toe reflex before proceeding and inject an 
analgesic meloxicam (10 mg/kg) subcutaneously. Apply a generous 
amount of eye lubricant ointment to cover the mouse’s eyes to avoid 
corneal drying. Adjust the isoflurane concentration to 1.5%.

3) Apply lidocaine on the tip of the earbars and secure them onto 
two sides of the skull in front of the mouse’s ears. Stabilize the mouse 
head on the stereotaxic frame by adjusting the heights of the earbars and 
the bite bar (Figure 10b).

4) Shave the top of the mouse’s head and disinfect the scalp three 
times by directly applying beta iodine and 70% ethanol.

5) Check the mouse’s response to the toe pinch and incise the 
scalp with sterile surgical scissors. Gently clean the exposed skull by pick-
ing up hair. Apply 0.5 ml of bupivacaine on the skull and leave it on for 5 
minutes for local anesthesia to be induced.

6) After 5 minutes of waiting time, gently scrap the periosteum off 
with a scalpel blade and wash the surface with sterile saline. Clean any 
blood, hair, or periosteum tissues on the exposed skull to ensure a clean 
injection area.

7) Gently detach the tendons attached to the posterior part of the 
skull and create a clean “pocket” between the skull and the skin near the 
neck. If the skull bleeds, use surgifoam to cover the area and wait for 5 
minutes. After removing surgifoam, clean the exposed skull with saline 
and ethanol, and wait for it to dry.

8) Locate bregma using the manipulator attached to the stereotax-
ic frame and set the position reader of the manipulator to zero. Locate the 
lambda (Figure 10a). Adjust the anterior (A) and posterior (P) alignment 
of the brain until the depth difference between bregma and lambda is less 
than 0.10 mm.

9) Use the points 2.00 mm left and 2.00 mm right to the bregma 
for the lateral alignment of the brain. Align the brain until the depth 
difference between the left and right is less than 0.10 mm. The lateral 
adjustments of the brain might change anterior (A) and posterior (P) 
alignments, thus AP alignment should be re-checked.

10) After the brain is aligned in both directions, move the manipu-
lator to target the injection site and mark a “dot” with a sterilized marker.

11) Before drilling the skull above the injection site, check the 
mouse’s toe pinch response. If there is no response, carefully drill the 
skull with a dental drill. If bleeding starts, apply surgifoam for 5 minutes 
and clean the area with saline.

12) Fill a glass pipette with mineral oil and attach it to the nano-
injector. Flush 1000 nl of mineral oil out of the glass pipette using the 
nanoinjector pump.

13) Turn down the microscope light to low, and dispense 6-OHDA 
on the parafilm-wrapped surface to load into the pipette.

14) Load the desired amount of 6-OHDA into the glass pipette 
attached to the nanoinjector. Move the pipette to the injection site and 
lower it down to the desired depth to dispense 6-OHDA at 25 nl/min. 
While injecting 6-OHDA, the microscope light should be turned off com-
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pletely to avoid light-induced degradation.

15) When the injection is complete, wait for 5 minutes before 
slowly retracting the pipette from the brain. Close the injection hole with 
a small amount of dental wax and cover it with a drop of medical-grade 
adhesive. 

16) When the adhesive is dry, disinfect the exposed skull again 
and cover it with a thin layer of adhesive. Wait for the adhesive to dry 
completely.

17) Apply cement (dental acrylic and jet fluid mixture) to cover 
the exposed skull and the mouse’s ID will be written on top of the dried 
cement.

18) Turn off the isoflurane, take the mouse off the stereotaxic 
frame, and place it into a warm cage with easy access to water and diet 
gel. If the surgery took longer than 2 hours, inject saline subcutaneously 
to prevent dehydration.

19) The mouse should be monitored until it regains its conscious-
ness from anesthesia. It will be transported back to the biological resource 
facility housing afterward.       

20) 

`

Figure 10: Demonstration of intracranial injection. (a) the location of 
bregma and lambda; (b) simplified stereotaxic frame and intra-cranial 
injection setup.
Results

A total of 25 mice received either 6-OHDA (n = 20) or vehicle 
injection (n = 5) at various doses (Table 1). 15 mice (10 of 6-OHDA mice, 
5 of vehicle mice) received an injection in the ventral striatum (STR) in 
the right hemisphere, and 10 received an injection in the dorsal STR in 
the right hemisphere. Two mice (0.008 mg 6-OHDA in the ventral STR) 
died after pd3 data collection. Four mice (0.009 mg 6-OHDA in the dorsal 
STR) died within 3 days after the surgery. We suspect the mortality is 
increased with both 6-OHDA dose and mouse age. No vehicle mice were 
found dead. In total, we completed data collection from 21 mice.

Mouse Sex Age Dose (mg) Injection Site Found Dead Incomplete Data

774 M 30 0.00 R (0.6A, 2.0L, 4.0V)   

775 M 30 0.00 R (0.6A, 2.0L, 4.0V)   

776 M 30 0.00 R (0.6A, 2.0L, 4.0V)   

777 M 33 0.00 R (0.6A, 2.0L, 4.0V)   

778 M 33 0.00 R (0.6A, 2.0L, 4.0V)   

635 F 20 0.004 R (0.6A, 2.0L, 4.0V)   

636 F 20 0.004 R (0.6A, 2.0L, 4.0V)   

642 M 20 0.004 R (0.6A, 2.0L, 4.0V)   

648 M 25 0.004 R (0.6A, 2.0L, 4.0V)   

651 F 22 0.004 R (0.6A, 2.0L, 4.0V)   

724 F 19 0.008 R (0.6A, 2.0L, 4.0V)   

725 F 19 0.008 R (0.6A, 2.0L, 4.0V)   

726 M 24 0.008 R (0.6A, 2.0L, 4.0V)   

727 M 25 0.008 R (0.6A, 2.0L, 4.0V) x  

728 M 25 0.008 R (0.6A, 2.0L, 4.0V) x  

789 M 43 0.009 R (0.6A, 2.0L, 3.0V)   

790 M 43 0.009 R (0.6A, 2.0L, 3.0V)   

791 M 43 0.009 R (0.6A, 2.0L, 3.0V)   

663 M 43 0.009 R (0.6A, 2.0L, 3.0V)   

669 M 43 0.009 R (0.6A, 2.0L, 3.0V)   

891 M 55 0.009 R (0.6A, 2.0L, 3.0V)   

709 M 43 0.009 R (0.6A, 2.0L, 3.0V) x x

792 M 47 0.009 R (0.6A, 2.0L, 3.0V) x x

888 M 51 0.009 R (0.6A, 2.0L, 3.0V) x x

889 M 50 0.009 R (0.6A, 2.0L, 3.0V) x x

Table 1: Mouse ID, sex, age (in weeks), 6-OHDA dose received, injection 
coordinates, whether they died during the experiment, and whether only 
partial data were collected.

Chapter 2: Behavioral Data Analysis using DeepLabCut

Methods

DeepLabCut

In order to analyze the open-field data more parametrically, 
efficiently, and precisely, I built a DLC pipeline to automatically track 
the animal’s body parts of interest and produce the body position data. 
The DLC pipeline was customized to capture the x-y coordinates of the 
mouse’s snout, left ear, right ear, nape, tail base, and tail tip, so that the 
overall body postures of the mouse and their specific body parts’ move-
ment data can be collected.

To train a DLC model, a few open-field video samples (recorded 
with non-experimental mice) were used as training data. DLC automati-
cally generates relatively diverse qualities of frames for manual labeling. 
In those automatically selected frames, the snout, left ear, right ear, nape, 
tail base, and tail tip were manually labeled by a human experimenter. 
After labeling, DLC merged labeled frames with the rest of the frames 
and split them into training and testing datasets. These two datasets are 
processed using ResNet, a convolutional neural network that supports 
hundreds or thousands of convolutional layers. As the DLC ResNet has 
been pre-trained to segment and detect objects with numerous real-world 
data from wide range of animals, it only needs to be refined to detect 
the specific body parts labeled in the training and testing data. After this 
training, if the model did not yield the desired level of accuracy, frames 
with poor accuracy were extracted to be re-labeled so that the ResNet 
could be further fine-tuned. This training step was performed only in one 
mouse and the same trained network was used for all other mice without 
further training. Thus, each open-field video file was simply loaded to 
DLC and processed into a CSV file which contains the x-y coordinates 
(units) of each of the six body parts in every video frame.

Data Analysis

         To analyze the body position data in the DLC CSV 
file (i.e., kinematic data), an open-source Python library PyRat was 
utilized. Pyrat computes gross locomotion features such as total travel 
distance (m) and mean travel speed (cm/s) from DLC-processed CSV 
files. To compute median speed (cm/s), hyperactivity frequency and total 
freezing duration (s), I wrote custom code utilizing the open-source code 
in Pyrat. A spatial filter of 64.03 cm (the longest distance between 2 points 
within the open-field area) was applied to remove motion artifacts. Each 
video is analyzed at a 60 frames per second base.

Total travel distance(m) is calculated as the sum of the Euclidean 
distance of the tail-base position between two consecutive time frames. 
Median speed (cm/s) is the median of all speed values computed 
between consecutive frames. The frequency of hyperactivity is defined 
as the number of incidences where speeds exceed 75% percentile of the 
overall speed distribution across all mice, continuously for more than 
30 frames (equivalent to 0.5 seconds). The total duration of freezing is 
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quantified as the cumulative time of each freezing duration in which 
two consecutive frames’ dislocation is less than 0.1cm for longer than 4.5 
seconds.

To compute the hyperactivity frequency, the overall distribution 
of all movement speeds was first calculated across all data, and the 75% 
percentile speed was determined to be 8.47 m/sec (Figure 11).

          
 

Figure 11: Distribution of speed.

Freezing is computed when the movement distance from a previ-
ous frame is shorter than 0.001cm for a continuous interval. To determine 
the most informative freezing duration for identifying PD mice, the total 
duration of freezing was computed using different durations: 2.5s, 3s, 
3.5s, 4s, 4.5s, 5s, and 5.5s. Then, I conducted a LASSO (Least Absolute 
Shrinkage and Selection Operator) feature selection test to determine the 
significance of these different freezing thresholds in identifying PD mice. 
The result indicates that the highest significance is achieved by using a 
threshold of 4.5s (Figure 11).

                                     

Figure 12: Importance of freezing duration by LASSO.

Results

All the open-field test data were analyzed through the DLC pipe-
line to generate CSV files containing the x-y coordinates of six body parts 
for each time frame. Figure 13 shows an example frame with the six body 
parts labeled by DLC and a sample CSV file.

Figure 13: DLC-processed frame and CSV file sample.

Using the kinematic data (i.e., times series of body parts’ positions) 
from the DLC output CSV file, four movement features were computed: 
total travel distance, median speed, hyperactivity frequency, and freezing 
duration.

Figure 14: Features baseline distribution per feature.

Figure 14 shows the distributions of the four movement features 
from the control session (1 day before 6-OHDA or vehicle injections) 
across 21 mice. The large variability among animals in the control session 
indicates that the baseline motor performance highly varies among dif-
ferent mice. Thus, the analysis of drug or vehicle treatment effects should 
take this inter-subject variability of the baseline into account. To address 
this, for each mouse, the mean of each feature was computed across all 
open-field test sessions (control, pd1, pd2, and pd3). This mean was 
subtracted from the raw movement feature value to adjust their baseline 
variabilities. For example, to calculate the mean-adjusted distance in 
pd1 for mouse 651, the mean distance across control, pd1, pd2, and pd3 
sessions of mouse 651 was subtracted from this mouse’s original distance 
in pd1 session, i.e., 651 pd1 distance - 651 mean distance.

 The baseline-adjusted motor features changed over time in 
both 6-OHDA-treated PD and vehicle-treated mice in general. The total 
travel distance significantly increased from the control (mean = -4.079, SD 
= 9.815) to pd3 (mean = 5.567, SD = 8.491) sessions in the vehicle mice (p < 
0.01*), while no differences were observed among PD mice (control: mean 
= 2.795, SD = 8.596; pd3: mean = -1.799, SD = 5.048). Both PD (p < 0.05*) 
and vehicle (p < 0.01) mice showed a significant decrease in the median 
speed when comparing pd1 (vehicle: mean = -0.188, SD = 0.332; PD: mean 
= -0.0794, SD = 0.843), pd2 (vehicle: mean = -0.182, SD = 0.231; PD: mean = 
-0.137, SD = 0.666), and pd3 (vehicle: mean = -0.432, SD = 0.154; PD: mean 
= -0.317, SD = 0.474) against control sessions (vehicle: mean = 1.045, SD 
= 0.378; PD: mean = 0.771, SD = 0.859). Consistent with the decline in the 
median speed, freezing durations increased in both PD (p < 0.01*) and 
control (p < 0.05*) mice from control (vehicle: mean = -34.928, SD = 23.810; 
PD: mean = -21.062, SD = 32.482) to pd3 (vehicle: mean = 22.155, SD = 
16.465; PD: mean = 10.251, SD = 23.139)  session. Similarly, the hyperactiv-
ity frequency significantly decreased from control (vehicle: mean = 28.3, 
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SD = 6.763; PD: mean = 25.156, SD = 21.072) to pd3 (vehicle: mean = -11.1, 
SD = 6.26; PD: mean = -10.156, SD = 9.935)  session in both groups (Figure 
15). These results suggest that most movement features exhibited similar 
trends over time between the PD and control groups, potentially reflect-
ing longitudinal changes from behavioral habituation to the open-field 
arena with repetitive exposures, rather than PD-specific motor deficits.

Figure 15: Feature Progression in PD and healthy mice.

 Despite the common habituation-like behavior, mice may 
show motor functions that change with the dose of 6-OHDA. To evaluate 
this possibility, the relationship between the motor features at PD3 and 
the dose of 6-OHDA was assessed (Figure 16). Within PD mice, mice 
treated with 0.009 mg of 6-OHDA showed significantly lower median 
speed (0.004: mean = 0.0883, SD = 0.176; 0.009: mean = -0.569, SD = 0.408; 
p < 0.05*) and hyperactivity frequency (0.004: mean = 0.0883, SD = 0.176; 
0.009: mean = -0.569, SD = 0.408; p < 0.01*)  compared to those treated 
with 0.004 mg 6-OHDA.  

Figure 16: Feature vs. 6-OHDA dose from pd3 data.

Discussions

The DLC pipeline automated the locomotive activities data 
extraction and significantly facilitated the movement features analysis. 
From the automatically extracted locomotive data, gross motor features 
were computed for each open-field test session. Likely reflecting habit-
uation effects to the open-field arena from repeated exposures, median 
speed, freezing duration, and the hyperactivity frequency decreased over 
time, but this change did not differ between PD mice and vehicle mice. 
However, within PD mice, certain motor functions such as median speed 
and hyperactivity frequency were deteriorated in a 6-OHDA dose-depen-
dent manner three weeks after 6-OHDA injection. Surprisingly, hyper-
activity frequency is not a common symptom examined in previous PD 
research. Our finding suggests hyperactivity frequency might be a new 
potential behavior predictor in PD diagnosis in mouse models. Never-
theless, gross movement features were not robust predictors that clearly 
distinguish the PD mice from the vehicle mice. This limitation suggests 
that there might be a loss of information when the full kinematic data are 
summarized into a few specific movement features. This further moti-
vates us to study the complete kinematic data for discriminating between 
the PD and vehicle mice in the future chapter.

Chapter 3: Quantification of PD Pathology Using QUINT Workflow

Methods

 Perfusion and Histology

         Once behavioral data collection was complete, mice 
were anesthetized in 2% isoflurane chambers, followed by intraperito-
neal injection of ketamine/xylazine mixture injection (10 mg/kg). After 
ensuring the absence of its response to toe pinches, transcardial perfusion 
was performed with 25 ml of 1% PBS followed by 25 ml of 4% PFA. The 
mouse brain was then extracted and immersed in 4% PFA for fixation 
for at least 24 hours before being transferred to 30% sucrose solution. 
After at least 24 hours’ immersion in sucrose, the brain was sectioned in 
the coronal plane using a freezing sliding microtome at a thickness of 
30 μm (Figure 17). Coronal sections of the brain were either mounted on 
adhesive slides immediately sectioning, or stored in 1% PBS in a 4 Celsius 
degree refrigerator for future mounting.

Figure 17: Visual demonstration of brain sectioning

Immunohistochemistry and Result

Immunohistochemistry (IHC) is a protein visualization tech-
nique used to target proteins of interest by using selective antibodies. 
To visualize dopamine neurons, tyrosine hydroxylase (TH), an enzyme 
that catalyzes the synthesis of dopamine neuromodulators, which are 
exclusively present in DA neurons, was targeted. Sectioned brain tissues 
can be used for IHC immediately after mounting or stored at -80 Celsius 
degree refrigerators until IHC procedure. On IHC day 1, if IHC tissues 
were retried from -80 Celsius degree refrigerators, they had to be thawed 
and washed with 1% phosphate-buffered saline (PBS). Then, they were 
incubated in the blocking buffer (1% normal goat serum, 1% bovine 
serum albumin in 0.3% PBS-Triton X-100) for 1 hour. After blocking, 
tissues were incubated in primary antibody solution (1/500 ThermoFish-
er Tyrosine Hydroxylase Polyclonal Primary Antibody in 1% BSA, 0.3% 
PBS-Triton X-100) in the -4 Celsius degree fridges overnight. On IHC day 
2, overnight-incubated tissues were washed with BSA washing buffer 
(0.25% BSA in 0.3% PBS-Triton X-100) three times each lasting 5 minutes. 
Subsequently, tissues were incubated in the secondary antibody solution 
(1/500 Goat Anti-Rabbit IgG H&L (Alexa Fluor® 488) Secondary Anti-
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body in 1% BSA, 0.3% PBS-Triton X-100) in the dark for one hour. The 
secondary antibody tagged the TH molecules bonded with the primary 
antibody with green fluorescence. After incubation, tissues were washed 
with BSA washing buffer (0.25% BSA in 0.3% PBS-Triton X-100) three 
times, 5 minutes each again. Finally, brain tissues were covered with 
coverslips and 6-diamidino-2-phenylindole (DAPI) mounting medium. 
Before fluorescence imaging, slides were ensured to be completely dry. 
Prepared slides were scanned under a Leica DMB6 Thunder Imager at 5X 
magnification. For the new QUINT model, images were scanned under 
20X magnification.

QUINT Workflow

To systematically analyze scanned IHC-processes images, I built 
a histology analysis pipeline using the two main steps in the QUNIT 
workflow: 1) registration of brain sections to a reference atlas, and 2) 
classification/detection of features of interest, such as labeled cells or 
structures. The registration of brain sections was done in QuickNll, where 
histological images were aligned against the standardized Allen Institute 
of Brain Science Mouse Brain Common Coordinates Atlas. This step also 
allows manual registration of vertical and horizontal brain sectioning 
angles, to align the anatomical structures to the reference atlas. Finer and 
non-linear refinement of brain slice registration was done in VisualAlign. 
This program enabled users to adjust the alignments of each brain tissues 
individually by dragging standard atlas brain outline.

Upon the completion of histology registration, ilastik was em-
ployed to detect TH+ neurons. Similar to DLC, I first labeled features of 
interest (green fluorescence cells) for training. The trained model was 
then used to detect the features in new brain tissues automatically. By 
combining the registration and feature detection in the brain section 
images, the spatial distribution of the features of interest can be automat-
ically quantified in Nutil. This semi-automatic approach to pathological 
tissue processing is systematic, inexpensive, and efficient.

   

Figure 18: QUINT pipeline.

Results

 Brain tissues between 2.5 mm to 3.7 mm posterior to bregma 
from each mouse were processed using IHC, and imaged using a 5X 
objective. In the sample image below (Figure 19), the green fluorescence 
signals represent TH+ neurons, while the blue DAPI signals mark all 
nuclei in the brain slices. A clear asymmetry in the TH signal is observed 
between the hemisphere injected with 6-OHDA and the non-injected 
hemisphere. This asymmetry indicates the loss of DA neurons in the 
injection side under the effect of 6-OHDA.

Figure 19: IHC sample image.

A casual inspection of the TH asymmetry suggests 6-OHDA 
dependence of DA neuron depletion (Figure 20). The higher the 6-OHDA 
dose, the more visual asymmetry appears to be. This observation moti-
vated a systematical quantification of the extent of asymmetry to link the 
pathology and motor symptoms that vary with the 6-OHDA doses.

Figure 20: TH asymmetry vs. 6-OHDA dose.

Using the QUNIT pipeline, I systematically registered and au-
tomatically quantified the number of TH+ neurons in the brain section. 
I computed the ratio in the number of TH+ neurons between the right 
and left hemispheres. As all mice were injected with 6-OHDA or vehicle 
solution in the right hemisphere, the ratio is expected to be less than 1 
for 6-OHDA mice. A larger DA degeneration will result in a ratio closer 
to zero. Consistent with this prediction, a significant negative correla-
tion between 6-OHDA dose and the symmetry ratio (i.e., larger loss of 
DA neurons in the injected hemisphere) was observed (0 mg : mean = 
0.983, SD = 0.0784; 0.00401 mg : mean = 0.76, SD = 0.254; 0.00801 mg : 
mean = 0.838, SD = 0.116; 0.009 mg : mean = 0.337, SD = 0.229; r = -0.577, 
p = 0.015*) (Figure 21). Thus, the earlier finding of the dose-dependent 
increase of impairment in some movement features is likely related to this 
dose-dependent increase of DA neurons. Indeed, a correlation between 
DA neuron loss and hyperactivities was found significant (r = 0.511, p < 
0.015*) (Figure 22).
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Figure 21: 6-OHDA dose vs. DA Neuron Depletion.

Figure 22: DA Neuron Depletion vs. mean-adjusted Hyperactivity.

 This implementation of QUINT significantly increased my effi-
ciency in TH+, DA neuron quantifications and provided data in line with 
the behavior analysis to some extent. However, it is crucial to evaluate 
the performance of QUINT model. Thus, I evaluated its performance by 
comparing QUINT quantification vs. human manual quantification in 
two aspects: 1) efficiency: how much DA neurons labeled by the human 
experimenter are also detected by QUINT; 2) accuracy: among all the 
QUINT detected neurons, how many of them are DA neurons labeled by 
the human experimenter.

QUINT outcome and human counting outcome were compared 
among three types of images: 1) high signal-to-noise ratio (SNR) that 
allows the human experiment to identify distinct DA neurons easily; 2) 
low SNR (Figure 23), and 3) saturated images that makes it difficult for 
the human experimenter to tease apart individual DA neurons from DA 
neuronal clusters (Figure 24). Across these three types of images, QUINT 
yielded high accuracy. However, the efficiency deteriorates for low SNR 
or saturated images (Table 2).

Tis-
sue

False 
Posi-
tive

False 
Nega-
tive

Hu-
man
De-

tected

Effi-
ciency

Accu-
racy

Clear, 
dis-
tinct

14 60 636 682 91% 97.8%

Weak 
DA 
neu-
ron

0 117 100 217 46% 100%

Clus-
tered 
Neu-
ron

28 752 143 867 16.5% 80.4%

Table 2: Manual evaluation of QUINT performance.

Figure 23: QUINT detection on weak neurons. QUINT is not able to de-
tect weak signals from input images (left: raw input; right: edited to show 
weak signals).

Figure 24: QUINT detection on clustered neurons.

The SNR of images can be improved by using a high magnifica-
tion objective and longer exposure time during microscope imaging. 
To examine how much the QUINT-based automatic quantification can 
be improved by optimizing imaging procedures, I re-imaged low SRN 
tissues using a 20X objective. When exporting images, I also adjusted the 
contrast level and intensity of signals to enhance the visibility of weaker 
signals. Additionally, a diverse set of images was intentionally selected 
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to increase the reliability of the new model in quantifying a wide range of 
tissues. The resulting images exhibited improved sharpness and clarity, 
as shown on the QUINT training GUI (Figure 25). During manual label-
ing in this GUI, I labeled a larger number of weak and clustered neurons 
to ensure a sufficient input size.

Figure 25: GUI of QUINT training page with 20X images.

While this new model is still undergoing trained and optimization, 
preliminary results have showed a significant improvement in detecting 
weak and clustered DA neurons, as shown in Table 3.

 Tissue
 

False 
Positive

False 
Negative

QUINT
Detected

Human
Detected

Efficien-
cy
 

Accuracy
 

Good 24 13 477 465 97.41% 94.96%
Weak 9 27 316 334 91.90% 97.20%
Clus-
tered 16 40 263 287 93.90% 86.10%

Table 3: Manual evaluation of new QUINT model performance.

Discussions

The QUINT workflow is a powerful tool that automates our neu-
ron quantification process. With a trained model, QUINT was capable of 
quantifying roughly 6-8 brain slices within half an hour, which is highly 
efficient compared to human operation, typically requiring ~5 hours. In 
our experiment, QUINT provided pathological evidence that supports 
our hypothesis about the 6-OHDA dose-dependent DA neuron loss and 
motor function impairments. While the current QUINT model performs 
less efficiently when detecting weak and saturated signals, we foresee 
great potential in further optimizing the performance of this AI-based 
analysis pipeline after improved pre-processing of images and mod-
el-training strategies.

Applying this new model after it is trained is expected to help us 
obtain more accurate quantifications. The combination of DA neuron loss 
quantification results and movement feature analysis suggests a more 
nuanced PD symptom detection that can be predictive in terms of patho-
logical scores (e.g. the extent of DA neuron loss), captured by kinematic 
data. This potential model will go beyond the current binary classification 
algorithms, providing specific pathology evaluation for disease progres-
sion tracking and intervention strategy designing and adjustments.

Chapter 4: Linear Regression Model Development

Methods

  To evaluate whether gross motor features can be reliable for PD 
disease diagnosis, a linear regression model was tested to classify wheth-
er mice were injected with 6-OHDA (i.e., PD mice) or not (non-PD mice), 
using the DLC and PyRat processed motor features extracted from the 

open-field test data as independent variables. The linear regression will 
provide us with a quantitative measure of the strength of each indepen-
dent variable in detecting PD mice. To determine which motor features 
are significantly related to PD diagnosis, an Ordinary Least Square (OLS) 
test was conducted with each feature as the single independent variable. 
Using all identified significant movement features, a multiple linear re-
gression model was built and evaluated with 1000 iterations of bootstrap-
ping. The statistics of accuracy, precision, recall, R-squared, and mean 
squared error (MSE) were assessed from these bootstrapped samples. 
Accuracy evaluates the overall prediction (i.e., classification) accuracy. 
Precision provides insights into the model’s ability to correctly identi-
fy correct and positive predictions and help minimize the risk of false 
positives, while recall evaluates the risk of false negatives. The ideal recall 
and precision values are both 1. R-squared is the coefficient of determina-
tion, which indicates the relevance between the dependent variable and 
independent variables. MSE assesses the differences between predictions 
and real data. Considering the imbalanced samples in our dataset (0:1 = 
26:16; 0 represents the non-PD and 1 represents PD), a better-than-ran-
dom model should obtain an accuracy above 0.619 (26/42 = 0.619). A 
perfect prediction model will have an MSE of 0 and an R-squared of 1.

Results

 The total dataset used for the linear regression analysis in-
cludes 16 PD videos and 26 Non-PD videos. OLS revealed the total travel 
distance (r = -0.0183, p = 0.042) and hyperactivity frequency (r = -0.0288, 
p = 0.001) are significant predictors for PD diagnosis. These two features 
were used as input and the treatment conditions (PD versus non-PD) as 
output in the linear regression model, where the chance level accuracy 
was set to 0.61 (26/42 = 0.61).        

 Figure 25 shows a bootstrap example in which the linear 
regression model successfully classified 31 out of 42 videos, achieving an 
accuracy of 0.74. With 1000 bootstrapping, the model obtained a mean ac-
curacy of 0.777, a mean precision of 0.805, a mean recall of 0.494, a mean 
R-square of 0.395, and a mean MSE of 0.139 (Figure 27). The low recall 
alarms the tendency for false negatives. This result suggests that input 
features used in the linear regression model are not sufficiently separable 
between the PD and non-PD mice to achieve the perfect classification.

Figure 26: Confusion Matrix for linear regression.
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Figure 27: Linear regression bootstrapping evaluation.

 Figure 28 shows which mice are misclassified by the linear 
regression model. This analysis indicates that the imperfect classification 
accuracy might be partly due to the inclusion of lowest-dose 6-OHDA 
samples, which exhibited motor features that are less discernable from 
the control condition, as shown in my earlier behavior analysis.

Figure 28: Linear regression misclassified mice.

Discussions

While the linear regression model yields better-than-chance level 
accuracy and precision in identifying PD from non-PD mice, the low 
mean recall rate suggests a high number of false negatives. Notably, all 
five PD mice injected with the lowest dose of 6-OHDA were misclassified 
as non-PD mice, indicating that the selected motor features as inputs to 
the linear regressor are insufficient in detecting subtle symptoms. In other 
words, our highly reduced, low-dimensional movement features may not 
capture the full characteristics of PD movements that distinguish them 
from non-PD behaviors. To address this, I applied a neural network ap-
proach to detecting PD mice in the next chapter, using the full time series 
of kinematic data instead of the processed features.

Chapter 5: Ensemble Neural Network Development

Methods

I developed a preliminary ensemble neural network, combining 
the kinematic data from six individual body parts tracked by the DLC 
pipeline. First, individual base neural networks were constructed to 
classify PD mice from their kinematic data of each body part separately. 
Subsequently, the ensemble neural network combined the six predictions 
from these base neural networks as input to a logistic neural network.

 Given the necessity for a large sample size for developing a neural 
network model, each 10-minute open-field video was segmented into 
20 short clips (each 30 second-long clip) and used those short clips as 
individual samples. To further increase the sample size, videos recorded 
at pd1 and pd2 sessions were incorporated into the data pool, except for 
2 videos with unexpected frame loss. The total sample size increased to 
920 non-PD and 958 PD samples. The total data set was split into 90% 
training data and 10% testing data. Training data was used to tune the 
model while testing data was used for evaluating the performance of the 
trained model.

All base neural networks have the same input layer structure (n = 
3601, including x and y coordinates of the body part at 1800 timeframes). 
A neural network using each body part data was separately trained and 
evaluated with one iteration of bootstrapping. The output layers consists 
of two output nodes: each representing the probability of being PD (i.e., 
1) and non-PD (i.e., 0). The chance-level accuracy was set to 0.51 (i.e., 
chance level = 958/ (958+920) = 0.51). 

Results
All base neural networks achieved a higher-than-random accuracy 

in predicting PD, where the right ear (accuracy = 0.706) and the snout (ac-
curacy = 0.704) have the highest accuracies (Table 4). Accuracies, recalls 
and precision are promising across all six models. 

Body 
Part

Input 
Layer

Hidden 
Layer

Output 
Layer

Accu-
racy Recall

Preci-
sion MSE

Tail 
Base 3601 (180,20) 2 0.627 0.66 0.659 0.373
Tail 
Tip 3601 (180,20) 2 0.569 0.506 0.633 0.431
Left 
Ear 3601 (600,30) 2 0.585 0.62 0.62 0.415

Right 
Ear 3601 (900,50) 2 0.706 0.669 0.776 0.294

Snout 3601 (600,30) 2 0.705 0.666 0.768 0.295
Nape 3601 2 0.695 0.648 0.758 0.305

Table 4: The structure and performance of base neural networks

Discussions

An ensemble neural network that combines the six base models is 
expected to perform better than any of individual base neural networks. 
Due to the time limit, an ensemble network model has not been fully 
tested. Nevertheless, my preliminary model tuned after only one iteration 
produced a promising result. An increased number of iterations of the 
current model is expected to yield a better performance in detecting PD 
mice from their rich movement data.

DISCUSSIONS

Neurological diseases can impair one’s motor and cognitive func-
tions, reducing quality of life significantly. There is an urgent call for a 
deeper understanding of these diseases thus treatments and interventions 
can be discovered. A fundamental challenge of elucidating the disease 
mechanisms is the fact that studies in humans are correlative in nature 
except for clinical trials. Therefore, animal model systems that enable con-
trolled perturbations to exacerbate or ameliorate pathogenesis are needed 
to establish causality. For instance, PD animal models induced genetically 
or chemically have demonstrated their importance in our understand-
ing of the molecular/cellular processes underlying Lewy body forma-
tion, synaptic modifications, neuroinflammation and other PD-related 
pathophysiology. A substantial, remaining challenge in those models is 
to identify how those pathophysiology result in behavioral symptoms. 
Currently, diagnosing PD symptoms in animal models is time-consum-
ing, labor-intensive, and subjective, heavily reliant on human judges. The 
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objective of this thesis was to develop an AI system that automatically 
scores PD symptoms in mouse model from their motor data. My research 
findings show that 1) the extent of motor impairment is positively cor-
related with the extent of DA neuron loss, 2) the machine-learning-based 
tools, DeepLabCut and QUINT workflow can be utilized to automatically 
and robustly extract the animal model’s motor behavior and pathology 
data, 3) an ensemble neural network that combines base networks trained 
with the time series of each body part position is a promising model that 
can accurately detect animals with PD symptoms from their motor behav-
ior data.

Motion and Pathology Analysis

         Machine learning algorithms are actively utilized 
in PD diagnosis in human subjects. These algorithms detect PD-related 
features in the subjects’ voice data, gait data, and handwriting data (Mei 
et al., 2021). Research that examines motor behavior typically uses wear-
able devices to sense the subject’s fine movements (Sotirakis et al., 2023). 
In contrast, the use of machine-learning technologies in animal model 
research has been far more limited despite the same need for accurate 
and sensitive detections of behavioral symptoms. In my thesis, I applied 
a machine learning technique to analyzing free-roaming kinematic data 
collected in the natural environment to detect PD motor symptoms and 
decern PD mice from non-PD mice.

I observed an overall increment in the total travel distance during 
the open-field test performed 3 weeks after injecting 6-OHDA or vehicle 
solution. Additionally, reduction in the median speed, and the frequency 
of hyperactivity, and an increment in freezing durations were observed 
in both 6-OHDA and vehicle mice Therefore, the change of these motor 
features over time do not differ between PD and vehicle mice. Thus, these 
apparent time-dependent changes that are common between the two 
treatment groups are likely to reflect the animals’ habituation to the open-
field environment from repetitive exposures which have been shown pre-
viously across different mice breeds (Bolivar et al., 2000). Nevertheless, 
some features show larger amounts of changes in high-dose 6-OHDA 
mice than vehicle or low-dose 6-OHDA mice, indicating that DA degen-
eration-related hypoactivity accentuated the habituation effect.

The QUINT workflow automated the DA neuron detection and 
quantification in the histology assay. The quantification of DA degener-
ation revealed a dose-dependent reduction in the frequency of hyperac-
tivity. This finding that DA neuronal degeneration impairs mice’s ability 
to execute fast movements is consistent with the known PD symptoms 
in humans. Herz and Brown’s proposed an increase in energetic cost in 
movements among PD patients (Herz & Brown, 2023) (Figure 29). Even 
when the expected peak force is lowered for PD patients, their energetic 
cost is higher than healthy individuals. In addition, Montgomery and 
Nuessen suggest a speed-accuracy trade-off system that was reduced 
at an initial gain in movements and offset movement time among PD 
patients (Montgomery & Nuessen, 1990). They found that human PD sub-
jects have longer reaction time and movement time, compared to healthy 
human subjects. With medication, PD subjects were able to shorten 
reaction time, movement time. The ability for one to execute maximal 
movement speed was improved with medication.

Figure 29: Effort cost of movements (Herz & Brown, 2023).

Overall, our results revealed 1) an uncommonly studied motor fea-
ture – hyperactivity, might be a new predictor in PD diagnosis in animal 
research, 2) greater DA neuron loss induces greater motor impairment.

Ensemble Machine Learning

I built a classifier that discriminate PD mice from non-PD mice 
by using a linear regression model and an ensemble neural network. 
Although our linear model using gross movement features show their po-
tential in distinguishing between PD and non-PD mice, its performance 
was highly limited, likely due to a loss of information in a few motor 
features extracted from the rich movement data. Thus, I devised an en-
semble neural network, aiming to improve the classification accuracy by 
using the full time series data of six body part positions. I first developed 
6 base neural networks, each using the locomotor activities of a single 
body part as input signal. With only one iteration of each model, all of 
base networks exhibited better-than-chance performance in classification. 
These results suggest that the ensemble network utilizing the kinematic 
data from all six body parts might perform far more accurately after a 
proper optimization through multiple iterations.  

LIMITATIONS

In the current study, movement features are computed only based 
on the base of the tail, assumed to be the most reliably labeled body part. 
Other body parts exhibit more dynamic movements during open-field 
tests, potentially reflecting PD symptoms that cannot be detected from 
the tail base movement. We computed only four movement features. 
Notably, hyperactivity frequency is not a feature commonly used in 
previous studies, but it unexpectedly turns out to be the most significant 
feature informing whether a mouse exhibiting PD. It is very possible that 
other less-explored motor features can be relevant to PD progression. For 
example, previous studies (Kim et al., 2018) showed the importance of 
gait changes in PD. 

Second, the inconsistency of IHC quality across brain tissues 
deteriorates the automatic detection and quantification of DA neurons. 
Despite the same IHC procedure and recipes, variations in the IHC quali-
ty demonstrate human experimental errors’ impact. Future investigations 
should optimize human IHC operations to avoid such performance-af-
fecting variability. 

Addressing the data size and bias issue is a significant challenge in 
the machine-learning model development. Machine learning is all about 
data. Small data size will lead to overfitting while biased data will yield 
a biased algorithm. Underrepresented population data tend to experi-
ence failed prediction or marginalization during training and prediction 
(Richardson, 2022).
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FUTURE STUDIES

 I plan to collect anterior brain sections from PD mice to investigate 
the relationship between the exact location and amount of the 6-OHDA 
injection and motor/pathological symptoms. As discussed in the in-
troduction, ventral DA neuron projections are related to both cognitive 
and motor dysfunction. Dorsal projections are more specific to motor dys-
function. Examining the injection site will reveal the specific anatomical 
locus that corresponds to specific symptoms. I am currently developing 
the new QUINT model. Preliminary data from the new model show 
improved efficiency and sensitivity. I anticipate that further training of 
the new model will establish a more accurate DA neuron quantification 
system that can ideally remove human intervention.

 I also aim to finish the development of the preliminary 
ensemble neural network by increasing the number of iterations and 
adjusting the model architectures. Building on the existing 90% training 
and 10% testing data splitting structure, splitting ~5% optimization data 
set will help significantly in fine-tuning each base neural network after 
using training and testing dataset, to yield better model performance. 
Developed base models should generate predictions per video clip. By in-
tegrating all predictions per video (n = ~20), a threshold (e.g. the number 
of PD predictions vs. the number of non-PD predictions) will be used to 
determine whether a video exhibits PD features. Following the logistics, 
each video will obtain 6 predictions, one per body part. From there, a 
final logistic or linear regression model can be used to integrate these 6 
predictions, thus generating a final prediction of the video (Figure 30). 
With this ensemble model, the final model is expected to eliminate the 
prediction bias and error of each neural network and create an optimal 
model for PD diagnosis. 

Figure 30: Future ensemble neural network structure per video

Finally, the ultimate goal of this project is to predict the patho-
logical score of each mouse based on locomotive data. I will employ 
established machine-learning classifier such as time-series classifiers, 
deep-learning neural networks, and VVG to accomplish this goal. These 
advanced techniques could potentially capture the complexity of locomo-
tive data better than the ensemble network to predict the corresponding 
pathological score in PD mice.

CONCLUSION

By employing AI-based models to acquire and analyze kinematic 
data from rodent models and to validate pathogenesis, my research estab-
lished an analysis pipeline that reduces human intervention and poten-
tially increases the objectivity and precision in detecting PD phenotypes. 
My finding that with more DA neuron loss, mice exhibit more sever 
motor dysfunction affirms the premise that pathological scores may be 
predicted from locomotive data collected in a natural environment. The 
preliminary neural network models that uses the full time series of kine-
matic data, instead of a few pre-defined motor feature, showed promising 
performance in detecting PD mice. By refining the base neural networks 
and combining them in an ensemble network is expected to enhance the 
classification performance. These results and outlook lay a strong foun-
dation for the future endeavors to develop a system that automatically 
computes fine-grained symptom scores from movement videos. 

Note: Eukaryon is published by students at Lake Forest College, who are solely 
responsible for its content. This views expressed in Eukaryon do not necessarily 
reflect those of the College. Articles published within Eukaryon should not be cited 
in bibilographies. Material contained herein should be treated as personal commu-
nication and should be cited as such only within the consent of the author. 
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