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Summary 

 

Chronic neurodegenerative diseases are 
characterized by progressive, irreversible neuronal 
cell loss. Since neurons have minimal regenerative 

potential, preventing their degeneration is vital to 
preventing disease progression; however, few 
effective therapies currently exist. Research in the 

last two decades has focused on uncovering 
neuronal cell loss mechanisms in hopes of devising 
new treatment strategies. These studies have 

evaluated the potential role of apoptosis within 
neurodegenerative diseases. Investigations of 
programmed cell death and its role in 

neurodegenerative disease has shed light on the 
possible apoptotic mechanisms employed by these 
disorders. This article will review general 

mechanisms of apoptosis and their implications 
within Alzheimer’s and Huntington’s diseases. 
 

The Apoptotic Machinery 
 
Cell death: necrosis versus apoptosis 

Cell death occurs in one of two ways: necrosis is a 
pathological process in which death signals are the 
direct cause of cellular destruction; apoptosis a is 

programmed process in which death signals initiate a 
cascade of activities that eventually result in cell death 
(Mattson 2006). The latter process, also known as 

programmed cell death, has important implications in 
neurodegenerative disorders. Although physiological 
apoptosis is a feature of normal development, aberrant 

apoptosis may become rampant in these diseases 
(Friedlander 2003). 
 

Processes of programmed cell death 
Apoptosis occurs through two pathways: the death-
receptor pathway and the mitochondrial pathway 

(Hengartner 2000). In the death-receptor pathway, 
death signals activate neuronal cell membrane 
receptors, prompting a cascade of events that 

eventually results in cell death (Hengartner 2000). The 
mitochondrial pathway, on the other hand, occurs when 
proapoptotic molecules respond to cell death signals by 

converging at the mitochondria (Hengartner 2000). 
These molecules cause mitochondrial release of 
proteins that carry out the cell death cascade 

(Hengartner 2000). Both pathways involve the 
activation of molecules called caspases, which degrade 
necessary proteins and ultimately lead to apoptosis (Liu 

1997; Hengartner 2000).  
Cells undergoing apoptosis display 

cytoplasmic and nuclear condensation, chromatin 

aggregation, and aggregation of mitochondria and 
ribosomes (Liu 1997; Hengartner 2000). After death, 
these cells exist as fragments and their DNA undergoes 

further cleavage (Liu 1997; Hengartner, 2000). This  
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review will convey the potential roles of the death-

receptor and mitochondrial apoptotic pathways within 
Alzheimer’s and Huntington’s diseases.  
 Treatment development for these and other 

neurodegenerative disorders demands a thorough 
understanding of the apoptotic mechanisms that 
contribute to neuronal cell death. Just 15 years ago, the 

general mechanism of apoptosis was largely illusive. 
However, studies published throughout the 1990’s shed 
light on the genes controlling developmental apoptosis 

in Caenorhabditis elegans. These findings fostered later 
investigations of programmed cell death in mammalian 
subjects. 

 
C. elegans: a model for the study of apoptotic 
mechanisms 

In the early 1990’s, a series of studies on apoptosis in 
C. elegans uncovered several genes involved in the 
programmed cell death pathway. In this organism, 

apoptotic events require ced-3 and ced-4 genes, but 
are inhibited by the nematode’s ced-9 gene (Yuan et al. 
1993). Mammalian gene product homologues have 

since been discovered. The C.elegans ced-3, ced-4 
and ced-9 genes respectively correspond to the 
following mammalian gene products: caspases, Apaf-1 

adaptor proteins and Bcl-2 proteins (Miura et al. 1993; 
Yuan et al. 1993). Specifically, the ced-3 gene product 
corresponds to mammalian caspase 1, also known as 

interleuken-1ß-converting enzyme. (Yuan et al. 1993; 
Hengartner and Horvits 1994). These molecules play 
critical roles in programmed cell death pathways. 

 
Apoptosis in mammalian neurodegenerative diseases 
In neurodegenerative diseases, death-receptor 

apoptotic pathways initiate when pro-death signals 
interact with one of several neuronal cell membrane 
receptors, thereby prompting a cascade of events that 

ultimately results in cell death (Yuan and Yanker 2000). 
Activation of neuronal cell membrane receptors may 
result in caspase activation, enhanced calcium levels 

and the generation of reactive oxygen species (ROS) 
(Lorenzo et al. 2000). Such events contribute 
significantly to programmed cell death: caspases are 

the molecules chiefly responsible for apoptosis; high 
calcium levels and ROS are known to contribute to the 
mitochondrial pathway (Lorenzo et al. 2000). 

 Mitochondrial apoptosis is initiated by a 
variety of signals, including Bcl-2 proteins, high 
intracellular calcium levels and reactive oxygen species 

(ROS) (Kruman et al. 1997; Li et al. 1997; Lorenzo et al. 
2000). These signals accumulate at the mitochondria, 
resulting in the release of one of several pro-death 

molecules into the cytoplasm (Figure 1; Li et al. 1997). 
Mitochondria, in addition to their role in energy 
production, contribute to apoptosis by releasing pro-

death molecules into the neuronal cytoplasm (Krohn et 
al. 1999). One pro-death molecule with particular 
implications in neurodegenerative diseases is 

cytochrome c, which exists normally in the electron 
transport chain on the mitochondrial membrane (Li et al. 
1997). Upon entering the cytoplasm, cytocrome c forms 

an apoptosomal complex with a procaspase, ATP and 
Apaf-1, an apoptotic protease-activating factor (Figure 1; 
Hengartner 2000). This complex then works as a cell 

death signal by promoting caspase activation (Li 1997). 
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Figure 1. Generalized Mitochondrial Apoptotic Pathway. Various signals promote mitochrondrial release of proapoptotic molecules: Bcl-
2 proteins, reactive oxygen species (ROS) and high Calcium levels. The mitochondria release, proapoptotic molecules, such as 
Cytochrome c. Cytochrome c binds Apaf-1 and procaspase 9 to form the apoptosome, thereby activating caspase 9. Caspase 9 activates 
caspase 3, ultimately leading to cell death. (Friedlander 2003). 

 
The role of caspases 

Caspases, or cysteine-dependent, aspartate-specific 
proteases, are enzymes that cleave proteins after an 
aspartic acid residue (Hengartner 2000). They 

represent the chief components of the mammalian 
apoptotic mechanism (Friedlander 2003). At least 14 
different caspases exist; 11 have been documented in 

humans (Yuan et al. 1993). These molecules, 
homologous to C.elegans ced-3 gene products, occur 
inactively as precursor procaspases and then launch 

the cell into apoptosis after activation (Yuan et al. 1993). 
Procaspases contain two subunits and an N-terminal 
activation region, and they exist as either upstream 

initiators or downstream executioners (Liu 1997).  
Upstream initiators contain long N-terminal regions and 
are regulated either by cell death signals or at the 

transcriptional level; downstream executioners contain 
short N-terminal regions and are activated by upstream 
initiators (Liu 1997). The apoptotic program includes 

destruction of essential cell elements; the process 
completes when active downstream executioners 
instigate DNA degradation (Liu et al. 1997). Caspases 9 

and 3 are the initiator and executioner caspsases, 
respectively, that typically predominate 
neurodegenerative diseases (Friedlander, 2006). 

However, caspases 6, 7, 8, 12 and 14 are also involved 
in programmed cell death mechanisms (Chan et al. 
2000; Friedlander, 2006). 

 
Apoptosis in Alzheimer’s disease 
 

Disease background 
Alzheimer’s disease (AD) is a progressive 
neurodegenerative disorder characterized by 
widespread cerebral atrophy beginning in the 

hippocampus and spreading to the temporal and frontal 
brain lobes (Kang et al. 1987; Mattson 2004). These 
brain regions are largely responsible for learning and 

memory capabilities, and their degeneration explains 
the short-term memory loss, slowed speech and 
cognitive dysfunction characteristic of AD (Mattson 

2004). The disease exists in two forms: sporadic AD 
occurs in ~90% of cases, has no inheritance pattern 
and cannot be linked to a gene; familial AD (FAD) 

occurs in ~10% of cases, is inherited in an autosomal 

dominant pattern, and can be traced to the amyloid 

precursor protein (APP) gene, the presenilin-1 gene 
(PS1) or the presenilin-2 gene (PS2) (Nijhawan et al. 
2000).  

AD brains are distinguished primarily by the 
presence of two pathological protein inclusions: 
extracellular plaques composed of amyloid-ß (Aß) 

proteins, and intracellular neurofibrillary tangles 
composed of microtubule-binding tau proteins (Mattson 
2004). The presence of these inclusions correlates with 

disease progression throughout the brain (Mattson 
2004). In addition, Aß plaque presence in particular 
correlates with decreased neuronal synapses and 

increased neuritic damage, suggesting that this protein 
may have a neurotoxic role (Mattson 2004). Research 
in the last two decades has suggested that Aß plaques, 

as well as tau tangles, play a role in the degeneration 
and cognitive impairment that occurs in AD. Many of 
these studies have attempted to elucidate the way in 

which AD gene mutations may contribute to the 
disease’s apoptotic mechanisms. 
 

Amyloid precursor protein (APP) and its Aß cleavage 
product 
Research on APP and its role in programmed neuronal 

death began to increase after the Aß protein had been 
sequenced, and its precursor’s gene localized to 
chromosome 21 (Kang et al. 1987). Both the APP 

protein and its Aß cleavage product exist in normal 
individuals; however, AD patients with mutant APP 
genes produce a precursor that undergoes abnormal 

cleavage in neuronal cell membranes (Kang et al. 
1987). The mutant precursor is cleaved twice to 
produce the Aß protein seen in AD plaques: the 
enzyme ß-secretase (BACE) performs an initial 

extracellular cleavage; the enzyme -secretase 
performs a second intramembrane cleavage (Mattson 
2004). In addition to APP gene mutations being 

implicated in neuronal apoptosis, mutations in the 
presenilin genes encoding the APP-cleaving enzymes 
have also been linked to AD development (Levy-Lahad 

et al. 1995).  
 
APP gene mutation: its role in neuronal apoptosis 
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The role of APP gene mutations and Aß plaques in the 
brains of AD patients is currently under heavy debate: 

researchers are unsure whether Aß plaques are toxic or 
protective protein depositions. Although this question 
remains to be answered, several observations have 

been made regarding Aß’s potential role in the 
apoptotic machinery. Initial studies on this topic 
suggested that Aß plaques directly induce apoptosis in 

vitro (Yanker 1996). However, recent research shows 
that Aß is more likely to induce apoptosis indirectly, 
possibly by first promoting oxidative stress through the 

production of reactive oxidative species (ROS) (Behl et 
al.; Kruman 1997; Mattson 2006). ROS are known 
proapoptotic molecules within the mitochondrial cell 

death pathway (Kruman 1997; Mattson 2006). Aß may 
also instigate this pathway by upregulating the 
proapoptotic Bcl-2 bax protein (Paradis et al.1996), and 

inducing other apoptotic signal cascades (Mattson et al. 
1998). Such research suggests that APP gene 
mutations and Aß plaques initiate apoptosis quite early 

within the mitochondrial cell death pathway. However, 
other research has found that some genes implicated 
further downstream in this pathway are upregulated in 

mutant APP mice, including those that encode 
caspases 6 and 8 (Reddy et al. 2004).  
 Aß plaques, in addition to their role in 

mitochondrial apoptosis, may also be involved in the 
death-receptor pathway. Aß interacts with microglia and 
a variety of neuronal cell membrane receptors to 

promote this apoptotic pathway (Figure 2; Yuan and 
Yanker 2000). These receptors include: the tumor 
necrosis factor-  (TNF- ) receptor, the p75 receptor, 

receptors for glycation advanced endproducts (RAGE), 
and others (Figure 2; Lorenzo et al. 2000; Yan et al. 
1996; Yarr et al. 1997). Aß interaction with microglia 

induces the secretion of TNF- , a protein known to 
promote neuronal apoptosis (Giulian et al. 1996, Tan et 
al., 1999). Aß activation of neuronal cell membrane 

receptors results in ROS generation, increased calcium 
levels and other events that also contribute to 
mitochondrial apoptosis (Figure 2; Lorenzo et al. 2000). 

Particularly interesting is the fact high calcium levels 
may activate, in addition to the mitochondrial pathway, 
molecules known as calpain proteases (Figure 2; Yuan 

and Yanker 2000). Calpain proteases prompt the 
kinase Cdk5 to phosphorylate tau, thus activating the 
protein (Figure 2; Patrick et al. 1999). Activated tau 

protein binds itself, creating the neurofibrillary tangles 
characteristic of AD (Figure 2; Mattson 2004). These 
tangles are also considered to be possible contributors 

to neuronal apoptosis, perhaps through their ability to 
increase ROS levels and thus promote apoptotic 
pathways  (Mattson 2004; Yan et al. 1994). 
 

Presenilin mutations and their role in neuronal 
apoptosis 
In addition to the role of APP mutations in promoting 

apoptosis, mutations in the presenilin genes, 
particularly presenilin 1, have been associated with 
apoptotic pathways in AD. For example, neurons from 

presenilin 1 mutant mice are more susceptible to 
apoptotic events than their non-mutant counterparts 
(Chan et al. 2000). This increased susceptibility could 

be the result of several causes; however, research 
points toward the possibility that presenilin-1 gene 
mutations may increase intracellular calcium levels by 

altering the endoplasmic reticulum’s calcium balance 
(Guo et al. 1997). Cell cultures taken from presenilin 1 
mutant mice showed elevated calcium levels, a factor 

known to contribute to mitochondrial apoptotis 

(Friedlander 2006; Guo et al. 1997). In addition, 
presenilin gene mutations increase Aß plaque 

production and may thus contribute to apoptosis 
through this molecule (Schuener et al. 1996). 
 

Evaluating AD Apoptosis and Devising Target-Based 
Treatments 
Although many studies suggest that programmed cell 

death plays a critical role in AD neurodegeneration, 
researchers remain largely unable to quantify the 
amount of cell loss that can be attributed to apoptosis. 

Although many degenerating neurons display the 
cytoplasmic and nuclear condensation and chromatin 
aggregation characteristic of apoptosis, not all declining 

AD brain cells present these signs (Liu, 1997; Su et al. 
1994). In addition, pinpointing the direct cause of 
apoptosis in AD will also require additional research. 

Many studies suggest that the disorder’s pathological 
inclusions play a role in programmed cell death 
pathways; however, additional research is necessary to 

evaluate the full function of these protein aggregates.  
Despite the fact that many questions 

regarding apoptosis in the AD brain remain unanswered, 

current research on this topic has enabled scientists to 
develop potential therapeutic strategies for AD 
treatment. For example, Aß’s ability to promote 

apoptosis through interaction with neuronal cell 
membrane receptors suggests that blocking these 
receptors may prevent the apoptotic pathway in AD 

(Yuan and Yanker 2000). In addition, inhibiting the 
caspases that ultimately drive apoptosis may also be a 
potential treatment for the disorder: caspase inhibition 

in AD mouse models has resulted in decreased 
evidence of neuronal death by apoptosis (Nakagawa et 
al. 2000).  

 
Apoptosis in Huntington’s disease 
 

Disease background  
Hungtington’s disease (HD) is an autosomal dominant 
neurodegenerative disorder characterized by motor 

dysfunction, cognitive impairment and psychosis (Sharp 
et al. 1995). The disease is caused by an IT15 gene 
mutation on chromosome 4 (Sharp et al. 1995). This 

mutation produces a CAG/polyglutamate repeat 
expansion in the gene’s protein product, huntingtin (htt) 
(Sharp et al. 1995). The DNA sequence CAG encodes 

the protein glutamate, an amino acid known primarily 
for its roles in metabolism and as a neurotransmitter 
(Cotman and Monaghan 1986; Kandel 2001). Normal 

huntingtin protein contains 9-35 CAG repeats; however, 
its mutant form may contain up to 250 of these repeats 
(Cattaneo et al. 2002). Both forms of the protein are 
known to undergo caspase cleavage to generate 

smaller, truncated fragments; however, the mutant 
protein’s fragments are distinct in their correlation with 
neurodegeneration (Wellington et al., 2002).  

 Researchers are unsure why the mutant 
protein’s CAG repeats cause HD; however, two 
theories exist to explain disease onset. One theory, the 

loss of function hypothesis, suggests that the CAG 
expansion disables huntingtin from carrying out its 
normal function (Catteneo et al. 2002). A second theory, 

the gain of function hypothesis, suggests that the IT15 
mutation produces a toxic huntingtin protein with a 
distinct conformation that enables it to stick to both itself 

and normal huntingtin (Catteneo et al. 2002). This 
conformation allows mutant huntingtin fragments to 
clump in aggregates and simultaneously inhibit the 

normal protein’s proper function (Catteneo et al. 2002).  
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Figure 2. Death-Receptor Apoptotic Pathway in Alzheimer’s Disease. Aß plaques activate neuronal cell membrane receptors and 
microglia, resulting in signal cascades that activate caspases, produce ROS and increase intracellular Ca

2+
.  Caspase activation leads 

directly to apoptosis. ROS generation and increased Ca
2+ 

contribute to the mitochondrial apoptotic pathway, eventually resulting in 
apoptosis. High Ca

2+
 levels may also activate calpain proteases, resulting Cdk5 phosphorylation of tau and the creation of neurofibrillary 

tau tangles that may also lead to neuronal apoptosis. (Yuan and Yanker 2000). 
 

Despite these opposing hypotheses regarding the exact 
role of CAG expansion, one idea is accepted across the 
board: mutant huntingtin forms inclusions in cell nuclei 

depending on the length of its CAG repeat, and longer 
repeats correlate with an increased presence of 
huntingtin inclusions (Senut et al. 2000). Moreover, 

these nuclear inclusions are associated with premature 
neuronal cell death, especially in the striatum and 
globus pallidus (Hickey and Chesselet 2003). Theories 
on the potential role of these HD inclusions in apoptosis 

have circulated for years, and studies on this topic 
increased markedly after the development of a mouse 
model for the disease in 1996 (Mangiarini et al. 1996). 

Since that time, the HD transgenic mouse model has 
been used to elucidate the disease’s cell death 
machinery.  

 
Mutant huntingtin inclusions: facilitators of HD 
apoptosis? 

Although the exact mechanism of apoptosis in HD 
remains to be uncovered, several insights into the 
disease’s apoptotic mechanisms have been made. 

Originally, huntingtin inclusions were believed to directly 
cause apoptosis in HD (Wellington et al. 1998). This 
possibility was reinforced by the fact that antiapoptotic 

factors inhibited aggregate establishment in HD mice 
(Wellington et al. 1998). Despite this finding, newer 
research suggests that aggregate formation does not 

initiate cell death, but may instead be the cell’s attempt 
to sequester mutant huntingtin fragments and thereby 
inhibit their toxic effects (Saudou et al. 1998). This latter 

possibility suggests that the mechanisms of inclusion 
formation, rather than the inclusions themselves, may 
be influential within HD cell death machinery (Hickey 

and Chesselet 2003). 
 
Inclusions inhibit vital protein transcription, thereby 

promoting apoptosis 
These inclusions develop when mutant huntingtin 
undergoes cleavage by caspase 1 or 3 in the cytoplasm, 

thus generating truncated fragments of the mutant 
protein that can both deplete normal huntingtin function 

and enter the nucleus prior to aggregation (Saudou et 
al. 1998; Wellington et al. 1998). Shorter fragments are 
more likely than longer fragments to form such mutant 

inclusions (Wheeler et al. 2000). Once accumulated in 
the nucleus, aggregates may alter transcription 
processes by interacting with a myriad of intranuclear 

proteins (Cha 2000).  
The transcriptional effects of mutant 

huntingtin aggregates have been studied heavily in 
terms of the role these effects play in apoptotic 

pathways. Over the course of the last decade, 
researchers have found that these aggregates interact 
with several nuclear proteins and are likely implicated in 

the programmed cell death machinery of HD neurons 
(Hickey and Chesselet 2003; Steffan et al. 2000). Many 
such research attempts have focused on the mutant 

protein’s effect on the transcriptional ability of three 
particular molecules: p53, GAPDH and Sp1 (Hickey 
and Chesselet 2003). Each of these will be described in 

greater detail throughout the following paragraphs.  
 Mutant huntingtin interacts with p53 and 
cAMP responsive binding element (CREB) binding 

protein (CBP) (Steffan et al. 2000). p53 is a tumor-
supressing transcription factor that transcribes 
proapoptotic proteins and regulates cell repair; CBP 

simply co-activates p53 (Hickey and Chesselet 2003). 
Mutant huntingtin decreases the transcriptional activity 
of these proteins (Steffan et al. 2000), thereby reducing 

repair pathway function and promoting negative 
symptoms in HD mouse models (de Boer et al. 2002). 
In fact, HD mice deficient cell repair proteins 

experienced severe wasting and died prematurely (De 
Boer et al. 2002). In addition to mutant huntingtin’s 
ability to interact with p53 and CBP, it also binds 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 
an enzyme known primarily for its role in glucose 
catabolism during glycolysis, but also involved in 

apoptotic pathways (Burke et al. 1996; Sheline and 
Choi 1998). Despite GAPDH’s known association with 
apoptosis, the exact mechanism by which it activates 

programmed cell death has yet to be determined 
(Sheline and Choi 1998). Finally, recent research 
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suggets that mutant huntingtin also interacts with the 
Sp1 transcription factor: the mutant protein inhibits Sp1 

transcriptional activity, as well as Sp1’s ability to 
promote such activity in other proteins (Dunah et al. 
2002). Intranuclear mutant huntingtin fragments were 

found to bind Sp1 and prevent the transcription factor 
from interacting normally with DNA; such research 
suggests that mutant huntingtin plays a role in 

preventing the production of necessary survival proteins, 
and may thus mark these deficient cells as targets for 
apoptosis. 

 
The role of caspase cleavage in the HD apoptotic 
mechanism 

As mentioned earlier, mutant huntingtin’s ability to 
affect DNA transcription depends largely on the 
assumption that the protein underwent earlier caspase 

cleavage (Saudou et al. 1998; Wellington et al. 1998). 
The apoptotic program in HD may therefore initiate 
during the disease’s early stages: upregulation of 

caspase 1 gene transcription has been documented in 
HD mice prior to the onset of symptoms (Ona et al. 
1999) and probably occurs when mutant huntingtin 

fragments translocate from the cytosplasm to the (Li et 
al. 2000). This trend is also evident in the activity of the 
proapoptotic protein, caspase 3 (Chen et al. 2000). The 

signals prompting caspase activation and mutant 
huntingtin cleavage remain to be discovered; however 
some insights have been made into this question. One 

possibility involves self-activation on the part of the 
caspases themselves; another suggests that the 
presence of CAG repeats, which are rarely accepted by 

cells, could result in the activation of proapoptotic 
proteins by mutant huntingtin (Hickey and Chesselet 
2003).  

 
Proapoptotic protein activity in human patients and HD 
mouse models 

For example, cytochrome c release and caspase-9 
activation have been documented in mice exhibiting 
severe symptoms, indicating that the apoptosis 

mechanism is also active during late stages of HD 
(Kiechle et al. 2002). Significantly, similar results have 
also been documented in human cases:  HD cells 

studied in vitro have demonstrated depolarization of the 
mitochondria, release of cytochrome c, and heightened 
activity of caspase-3, -8 and -9 (Ciammola et al. 2006; 

Kiechle et al. 2002; Ona et al. 1999). As mentioned 
earlier, mitochondria play an important role in 
programmed cell death through their interactions with 

proapoptotic proteins (Krohn et al. 1999). 
Depolarization of the mitochondrial membrane has 
been associated with mitochondrial release of such 
proteins, including cytochrome c (DuBmann et al. 2003; 

Krohn et al. 1999). After cytochrome c release, 
apoptotic pathways are well underway: caspase 
activation, DNA degradation and cell death follow 

thereafter (Li 1997).  
 
Evaluating HD Apoptosis and Devising Target-Based 

Treatments 
Although many studies suggest that programmed cell 
death plays an important role in HD progression, 

researchers are still unable to quantify the amount of 
neuronal loss that can be attributed to apoptosis. 
Although many degenerating HD neurons display 

morphological features characteristic of apoptosis, not 
all declining cells present these signs (Liu et al. 1997; 
Su et al. 1994). Moreover, determining the direct cause 

of apoptosis in HD will also require additional research. 

Many studies suggest that the disorder’s mutant 
huntingtin aggregates play a role in programmed cell 

death pathways; however, additional research is 
necessary to evaluate the full function of these 
inclusions.  

 Despite the fact that many questions 
regarding the role of apoptosis in HD remain to be 
answered, research on this topic has enabled scientists 

to devise potential therapeutic strategies HD treatment. 
Mutant huntingtin’s post-cleavage ability to induce 
apoptosis by altering DNA transcription suggests that 

preventing such cleavage events may inhibit apoptotic 
pathways (Wellington et al. 1998). In addition, inhibiting 
the caspases that ultimately drive apoptosis may be a 

potential treatment for the disorder. Treatment of HD 
with minocycline, a neuroprotective tetracycline 
antibiotic, is also a possible therapeutic method: 

minocycline prevents mitochondrial release of 
cytochrome c and thus inhibits the molecule’s ability to 
promote further apoptotic events (Friedlander 2003; 

Zhu et al. 2002). This effect of minocycline has also 
been seen in other neurodegenerative diseases, 
including Amyotrophic Lateral Sclerosis (ALS) and 

Parkinson’s disease (Friedlander 2003). 
 
Conclusion 

 
Over the course of the past two decades, scientific 
understanding of neurodegenerative processes has 

seen remarkable advances. Insight into the 
mechanisms of apoptosis within neurodegenerative 
disease now suggests these pathways may play a 

critical role in neuronal cell death through the activity of 
molecules, including Bcl-2 proteins, calcium and ROS, 
known to set off proapoptotic signal cascades via 

caspase activation. These developments have 
elucidated the molecules that can be targeted for 
neurodegenerative disease treatment. 

 
Note: Eukaryon is published by students at Lake Forest 
College, who are solely responsible for its content. The 

views expressed in Eukaryon do not necessarily reflect 
those of the College. Articles published within Eukaryon 
should not be cited in bibliographies. Material contained 

herein should be treated as personal communication 
and should be cited as such only with the consent of 
the author. 
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